Operational properties of gasoline with multifunctional additives





gasoline, additive, quality, operational properties, exhaust gas


Background. Due to the increased environmental requirements for combustion products, increased load on the engine, speed, longevity of cars, requirements for the quality of gasoline are increasing.
During the production of modern motor gasoline such processes are involved as: catalytic reforming, isomerization, catalytic cracking and alkylation. Unfortunately, there are not many factories in Ukraine that could produce gasoline and diesel fuel that would meet the requirements of today. Improving the performance of such gasoline is achieved by the introduction of multifunctional additives. Some of them are discussed in the article.
The aim of the article is to investigate the influence of multifunctional additives of European manufacturers on the operational properties of gasoline of domestic production.
Materials and methods. The research used gasoline produced by Ukrtatnafta, the most popular brands A-95 and A-92, which meet the requirements of technical regulations and SSTU 7687: 2015.
Keropur® Energy (Basf, Germany) and Chimec EP Line (Chimec, Italy) synthetic additives were used to maintain cleanliness and purification of the fuel system to improve performance.
When adding additives to gasoline, the following parameters were investigated: efficiency of maintaining the purity of the intake system according to the standard method of SES F-05-A-93, suspension of the inlet valves – according to SES F-16-T-96, corrosion of steel – for ASTMD 665 A mod.
Results. When dosing of 600 mg/kg (ppm) of Keropur® Energy in A-95 gasoline, the metal surfaces of the intake valves remain virtually clean. The deposits on the valves average 9 mg/valve. Similar results were obtained for gasoline A-92. The optimum recommended dosage for Category 3 and 4 gasoline is 600 mg/kg.
In the study of Chimec EP Line additives it was found that at a dosage of 350 mg/kg of gasoline A-95 the amount of deposits is < 20 mg/kg, and at a dosage of 500 mg/kg the amount of deposits is < 10 mg/kg, which meets the requirements of the World Fuel Charter.
The Keropur® ENERGY additive package was tested for hang-ups of SES F-16-T-96 valves in A-95 gasoline at –18 °C at a dosage of 1200 mg/kg. Gasoline with the additive was uniquely tested, all cylinders were fully compressed.
Keropur® ENERGY and Chimec A-95 gasoline packs effectively prevented corrosion processes.
The use of additives to reduce the emission of harmful substances can significantly reduce the level of emissions of harmful substances in the exhaust gases – hydrocarbons, which are not burned (HC), carbon monoxide (CO) and nitrogen oxides (NOx), as well as to 4–5 % and reduce gasoline consumption respectively the evolution of carbon dioxide ("greenhouse") CO2.
Conclusion. The results of the studies testify to the efficient operation of the car engine, ensuring that the requirements of the Euro-5 standards are fulfilled when using Keropur® ENERGY and Chimec EP Line multifunctional additives.
The optimal consumption of Keropur® ENERGY and Chimec EP Line supplements is 600 and 550 mg/kg respectively. At the market price of Keropur® ENERGY 2920 €/t and Сhimec EP Line 3120 €/t, the increase in the cost of gasoline will be 1.752 and 1.716 €/t, respectively, which is justified, given the significant improvement in their performance.

Author Biographies

Nina MEREZHKO, Kyiv National University of Trade and Economics

Doctor of Sciences (Technical), Professor, Head of the Department
of Commodity and Customs Affairs

Valentyna TKАCHUK, Lutsk National Technical University

hD in Technical Sciences, Associate Professor at the Department
of Commodity Science and Expertise in Customs Affairs

Olena ZINCHENKO, PJSC "Ukrtatnafta"

Head of the Central Plant Laboratory


World-wide fuel charter. (2002). Retrieved from http://fliphtml5.com/pkir/qnxi/basic [in English].

Bojchenko, S. V., Pushak, A. P., Topil'nyc'kyj, P. I., & Lejda, K. (2017). Motorni palyva: vlastyvosti ta jakist' [Motor fuels: properties and quality]. Kyi'v: Centr uchbovoi' literatury [in Ukrainian].

Burjachko V. R., & Guk A. V. (2005). Avtomobil'nye dvigateli: Rabochie cikly. Pokazateli i harakteristiki. Metody povyshenija jeffektivnosti jenergopreobrazovanija [Car engines: Working cycles. Indicators and characteristics. Methods to improve energy conversion efficiency]. Saint Petersdurg: NPIKC [in Russian].

ASTM D 665 A mod. Standard Test Method for Rust-Preventing Characteristics of Inhibited Mineral Oil in the Presence of Water. Retrieved from http://ppapco.ir/wp-content/uploads/2019/07/ASTM-D665-2014.pdf [in English].

Bojchenko, S. V., Ivanov, S. V., & Burlaka, V. G. (2005). Motorni palyva i masla dlja suchasnoi' tehniky [Motor fuels and oils for modern technology]. Kyi'v: NAU [in Ukrainian].

Benzyny avtomobil'ni Jevro. Tehnichni umovy [Gasoline automobile Euro. Specifications]. (2015). DSTU 7687:2015. Retrieved from http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=62187 [in Ukrainian].

Metody doslidzhennja palyv, prysadok ta ridyn v JeS [Research methods for fuels, additives and liquids in the EU]. Retrieved from https://www.cectests.org/public/info_/g003/cec10_2194_p.pdf [in Ukrainian].

Zinchenko, O., Topilnytskyy, P., & Romanchuk, V. (2018). Equipment of PJSC "Ukrtatnafta" laboratories in the aspect of the quality of petroleum products. K. Lejda (Eds.).Oficyna Wydawnicza Politechniki Rzeszowskiej, 14. Seria: Transport. Rzeszów [in English].

Bashkatova, S. T., Grishina, I. N., Smirnova, L. A., Kolesnikov, I. M., & Vinokurov, V. A. (2009). O mehanizme dejstvija prisadok v toplivnyh dispersnyh sistemah [On the mechanism of action of additives in fuel disperse systems]. Himija i tehnologija topliv i masel – Chemistry and technology of fuels and oils, 5 (555), 11-14 [in Russian].

Kapustin, V. M., & Rudin, M. G. (2013). Himija i tehnologija pererabotki nefti [Chemistry and oil refining technology]. Moscow: Himija [in Russian].

Topіl'nic'kij, P. І., Grinishin, O. B., Lazorko, O. І., & Romanchuk, V. V. (2015). Fіziko-hіmіchnі ta ekspluatacіjnі vlastivostі tovarnih naftoproduktіv [Physico-chemical and operational properties of commodity petroleum products]. L'vіv: Vidavnictvo L'vіvs'koї polіtehnіki [in Ukrainian].

Zagidullin, R. N., Idrisov, V. A., Dmitrieva, T. G., & Gil'mutdinov, A. T. (2011). Paket prisadok k al'ternativnym avtomobil'nym toplivam [Alternative car fuel additive package]. Himija i tehnologija topliv i masel – Chemistry and technology of fuels and oils, 3 (565), 15-17 [in Russian].

Danilov, A. M. (2014). Prisadki k toplivam kak reshenie himmotologicheskih problem [Additives to fuels as a solution to chemical problems]. Himija i tehnologija topliv i masel – Chemistry and technology of fuels and oils, 5 (585), 31-34 [in Russian].

Golych, Ju. V., Bojchenko, S. V., Topil'nyc'kyj, P. I., & Romanchuk, V. V. (2015). Zalezhnist' znevodnennja naft vid i'h fizyko-himichnoi' harakterystyky [Dependence of oil dehydration on its physical and chemical characteristics]. Naftogazova galuz' Ukrai'ny – Oil and gas industry of Ukraine, 1, 25-30 [in Ukrainian].

Gajdaj, O. O., Zubenko, S. O., Polunkin, Je. V., & Pyljavs'kyj, V. S. (2011). Ekologichni ta ekspluatacijni harakterystyky palyva motornogo biologichnogo E-85 [Environmental and operational characteristics of fuel biological motor E-85]. Proceedings of thezbirnyka naukovyh statej III Vseukrai'ns'kogo z’i'zdu ekologiv – Proceedings of thecollection of scientific articles of the Third All-Ukrainian Congress of Ecologists (pp. 308-310). Vinnycja: VNTU [in Ukrainian].

Tkachuk, V. V. (2013). Tovaroznavcha ocinka benzyniv, shho realizujut'sja na rynku m. Luc'ka [Commodity evaluation of gasoline sold on the market in Lutsk]. Tovaroznavchyj visnyk – Merchandise Bulletin. (Iss. 6), (pp. 125-130) [in Ukrainian].

Tkachuk, V. V. (2014). Ocinka jakosti svitlyh naftoproduktiv [Evaluation of the quality of light petroleum products]. Mizhnarodnyj naukovo-praktychnyj zhurnal "Tovary i rynky" – International scientific and practical journal "Commodities and Markets", 1 (17), 131-138 [in Ukrainian].

Tkachuk, V., Rechun, O., Merezhko, N., Bozhydarnik, T., & Karavaiev T. (2019). Assessment of the quality of alternative fuels for gasoline engines. Advances in Design, Simulation and Manufacturing. Proceedings of the 2nd International Conference on Design, Simulation, Manufacturing: The Innovation Exchange. (pp. 871-881). Lutsk, Ukraine. DOI: https://doi.org/10.1007/978-3-030-22365-6_87 [in English].

Neoureddini, H., Teoh, B. C., Davis Clements, L. (1992). Viscosities of Vegetable Oils and Fatty Acids. Journal of the American Oil Chemists’ Society. (Vol. 69), 12, 189-191. DOI: https://doi.org/10.1007/BF02637677, https://doi.org/10.1007/BF02637678 [in English].

Semenov, V. G. (2006). Garmonizacija nacional'nogo standartu na biodyzel'ne palyvo do jevropejs'kogo ta amerykans'kogo standartiv [Harmonization of national standard for biodiesel to European and American standards]. Proceedings of the Mizhnarodna naukovo-tehnichna konferencija "Problemy himmitologii'" – International Scientific and Technical Conference "Problems of Chemistry". (pp. 119-121). Kyi'v [in Ukrainian].

Marchenko, V., & Sin'ko, V. (2005). Efektyvnist' ta docil'nist' vykorystannja biodyzel'nogo palyva v Ukrai'ni [Efficiency and feasibility of using biodiesel in Ukraine]. Propozycija – Offer, 10, 36-39 [in Ukrainian].

Tehnichnyj reglament shhodo vymog do avtomobil'nyh benzyniv, dyzel'nogo, sudnovyh ta kotel'nyh palyv [Technical regulation on requirements for gasoline, diesel, marine and boiler fuels]. Retrieved from https://zakon.rada.gov.ua/laws/show/927-2013-%D0%BF [in Ukrainian].

Zaporozhec', O. I., Bojchenko, S. V., Matvjejeva, O. L., Shamans'kyj, S. J., Dmytruha, T. I., & Madzhd, S. M. (2017). Transportna ekologija [Transport ecology]. S. V. Boychenko (Ed.). Kyi'v: Centr uchbovoi' literatury [in Ukrainian].



How to Cite

MEREZHKO Н. ., TKАCHUK В. ., & ZINCHENKO О. . (2019). Operational properties of gasoline with multifunctional additives. "INTERNATIONAL·SCIENTIFIC-·PRACTICAL·JOURNAL·COMMODITIES·AND·MARKETS", 32(4), 50–60. https://doi.org/10.31617/tr.knute.2019(32)05




Most read articles by the same author(s)